OXABICYCLONONANE DERIVATIVES

Tetsuzo KATO*, Masayuki SATO, and Yoshinori KITAGAWA

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980

Reactions of 1-hydroxy-4,4-dimethylcyclooctane-2,6-dione-1-acetic acid β -lactone ($\underline{1}$) and 6-acetoxy-7-hydroxy-4,4-dimethylcis-bicyclo[4.2.0]octan-2-one-7-acetic acid β -lactone ($\underline{2}$) with methylamine give the oxabicyclononane derivatives ($\underline{4a}$ and $\underline{4b}$). Reaction of compound $\underline{1}$ with dimethylamine gives the amide ($\underline{3a}$), whose transannular prototropic tautomerism is discussed.

Previously we have reported that cis-bicyclo[4.2.0]octan-2-one-7-acetic acid β -lactone (2) reacted with dimethylamine to give the cyclooctane derivative $(\underline{3b})^1$. As a continuation of this study we investigated the reaction of 1-hydroxy-4,4-dimethylcyclooctane-2,6-dione-1-acetic acid β -lactone (1). The present communication reports the unique transannular prototropic tautomerism of the cyclooctane derivative (3a) and the synthesis of the novel heterocyclic ring system, 4a and 4b.

Compound $\underline{1}$ was allowed to react with 40% dimethylamine in CHCl $_3$ at room temperature for 2 hr to give the product, $C_{14}H_{23}NO_4$ ($\underline{3a}$), in 59% yield, mp 111.5-113.5° (AcOEt-cyclohexane). The NMR spectrum in trifluoroacetic acid (TFA) was well consistent with the structure, 1-hydroxy-N,N,4,4-tetramethylcyclooctane-2,6-dione-1-acetamide ($\underline{3a}$), NMR(TFA) δ 1.15(3H, s, CH $_3$), 1.21 (3H, s, CH $_3$), 1.82-2.80 (8H, m, $C_{3,5,7,8}$ -methylene), 3.42, 3.61 (2H, ABq, J=17.5 Hz, Q-methylene), 3.34 (6H, s, N-CH $_3$). However, the spectrum in pyridine and in CDCl $_3$ showed a little complicated signals suggesting the presence of its tautomers. For instance, in pyridine an AX type signal was observed at δ 2.25 and 4.12, which was assignable to the endo and exo protons of the C_3 -methylene of the bicyclic structure ($\underline{3'a}$) (Table 1). This assignment was made on the basis of the reported fact that the endo and exo protons of the C_3 -methylene of 5-hydroxy (and 5-acetoxy)-9-oxabicyclo[4.2.1]nonan-2-one ($\underline{5}$) exhibited great different chemical shifts giving the AX type signal $\underline{3}$. The IR spectral data also supported this isomerization, i.e., the spectrum in CHCl $_3$ showed two

amide carbonyl peaks at 1640 and 1626 cm⁻¹, but that as a Nujol mull exhibited only one amide carbonyl peak at 1620 cm⁻¹.

Me
$$\frac{3}{9}$$
 $\frac{1}{0^2}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3a}{4b}$ $\frac{3b}{4}$ $\frac{3b}{4}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{$

Similar tautomerisms were observed in case of 1-hydroxy-4,4-dimethylcyclooctane-2,6-dione-1-acetic acid $(3c)^2$ and its ester $(3d)^2$. Namely, the NMR spectra of both compounds in TFA were consistent with the cyclooctanedione structures (3c) and 3d.

3c: § 1.20 (3H, s, CH₃), 1.23 (3H, s, CH₃), 2.20-2.75 (8H, m, C_{3,5,7,8}-methylene), 3.04, 3.48 (2H, ABq, J=17.0 Hz, α -methylene). 3d: § 1.12 (3H, s, CH₃), 1.16 (3H, s, CH₃), 2.14-2.72 (8H, m, C_{3,5,7,8}-methylene), 2.96, 3.36 (2H, ABq, J=16.0 Hz, α -methylene), 3.79 (3H, s, OCH₃). On the other hand, their spectra in pyridine showed the similar pattern with that of 3a, i.e., an AX type signal was observed in both spectra (§ 2.35 and 4.00, J=11.5 Hz; 2.22 and 3.70, J=12.0 Hz) suggesting the endo and exo protons of the C₃-methylene of the bicyclo-isomers (3'c and 3'd) (Table 1).

Reaction of compound $\underline{1}$ with methylamine gave a sole product, $C_{13}^{H}_{21}^{NO}_{4}$ ($\underline{4a}$), in 78% yield, mp 182° (decomp.) (AcOEt). IR(KBr) 3490 (OH), 3260 (OH), 1675 (amide) cm⁻¹, NMR(pyridine) $\frac{1}{3}$ 1.04 (3H, s, CH₃), 1.44 (3H, s, CH₃), 1.76, 2.44 (2H, ABq, J=14.0 Hz), 1.80-2.24 (6H, m), 2.45, 3.04 (2H, ABq, J=16.0 Hz, C₄-methylene), 2.97 (3H, s, NCH₃), 4.86 (1H, br., OH). These data were **cons**istent with the tricyclic structure ($\underline{4a}$).

Compound $\underline{4b}^5$ was obtained in 55% yield by the reaction of $\underline{2}$ with methylamine, mp 176-177° (ether), $C_{15}H_{23}NO_5$. IR(Nujol) 3340 (OH), 1745 (ester), 1695 (lactam) cm⁻¹, NMR(pyridine) \S 1.10 (3H, s, CH₃), 1.46 (3H, s, CH₃), 1.66-3.15 (8H, m), 1.98 (3H, s, OAc), 3.00, 3.25 (2H, ABq, J=18.0 Hz, C₄-methylene), 3.05 (3H, s, NCH₃), 4.90 (1H, br., OH).

Although the precise mechanism of the formation of these products (4a and 4b)

remains obscure at present, the reaction is presumed as following: addition of methylamine to the oxetane carbonyl carbon of $\underline{1}$ gives the amide intermediate (\underline{A}) , which isomerizes to the cycloccta[b]pyrroridone derivative (\underline{B}) . Further cyclization of the intermediate \underline{B} would give either the tricyclic hemiketal derivatives $\underline{4a}$ or \underline{C} . As mentioned above, the methylamide of $\underline{1}$ exsists in only one form in pyridine and in DMSO-d₆-CDCl₃ solution. Therefore, the 9-oxabicyclo[3.3.1]nonane structure $(\underline{4a})$ is more stable compared with the 9-oxabicyclo[4.2.1]nonane system (\underline{C}) because of the less steric strain of the structure. Such isomerization to the cyclic hemiketal had to be considered in view of the reported fact that 5-hydroxycyclocctanone $(\underline{6})$ exsists almost exclusively in the hemiketal form, 1-hydroxy-9-oxabicyclo[3.3.1]-

The formation of $\underline{4b}$ can be explained as follows: addition of methylamine to $\underline{2}$ would give the tricyclic amide intermediate (\underline{D}) , acyl migration of which, accompanied with ring expansion, affords the cyclooctane derivative (\underline{E}) . Isomerization followed by cyclization gives the tricyclic hemiketal $(\underline{4b})$ via the intermediate \underline{F} .

Table 1 NMR Spectral Data of Compounds 3 and 3'

Me
$$\xrightarrow{5}$$
 $\xrightarrow{6}$ $\xrightarrow{7}$ $\xrightarrow{8}$ $\xrightarrow{0}$ $\xrightarrow{0}$ $\xrightarrow{1}$ $\xrightarrow{0}$ $\xrightarrow{0}$ $\xrightarrow{1}$ $\xrightarrow{0}$ $\xrightarrow{0}$ $\xrightarrow{1}$ $\xrightarrow{0}$ $\xrightarrow{0}$ $\xrightarrow{0}$ $\xrightarrow{0}$ $\xrightarrow{1}$ $\xrightarrow{0}$ $\xrightarrow{0}$

	Ratio (%)	4-CH ₃	CH ₂	N(0)-CH ₃
<u>3a</u>	17	1.09, 1.12	1.94-3.30(10H, m)	2.62, 2.69
3'a	83	0.90, 1.01	2.83, 3.27(2H, ABq, J=16.0 Hz, Q-CH ₂), 2.25	2.62, 2.69
			(1H, d, J=11.5 Hz, endo-C ₃ -H), 4.12(1H, d,	
			$J=11.5 \text{ Hz}, \text{ exo-C}_3-\text{H}), 1.94-3.30(6\text{H}, m)$	
<u>3b</u>	100	1.06, 1.32	3.46(2H, s, x -CH ₂), 2.19(1H, d, J=13.0 Hz,	2.17, 2.78
			$C_{3(5)}^{-H}$, 3.40(1H, d, J=13.0 Hz, $C_{3(5)}^{-H}$),	2.82
			2.20-3.00(6H, m)	
<u>3'b</u>	0		-	
3c	13	1.18, 1.29	2.00-3.53(10H, m)	
3'c	87	1.01, 1.10	2.92, 3.56 (2H, ABq, J=16.0 Hz, %-CH ₂), 2.35	
			(1H, d, J=11.5 Hz, endo-C ₃ -H), 4.00(1H, d,	
			J=11.5 Hz, exo-C ₃ -H), 2.00-3.53(6H, m)	
<u>3d</u>	32	1.15, 1.24	_	3.50
			1.90-3.03(8H, m)	
3 ' d	68	1.00, 1.05	2.68, 3.30 (2H, ABq, J=15.0 Hz, OX-CH ₂), 2.22	3.54
			(1H, d, J=12.0 Hz, endo-C ₃ -H), 3.70(1H, d,	
		:	J=12.0 Hz, exo-C ₃ -H), 1.90-3.Q3 (6H, m)	

*1 Spectra were taken on a JEOL-PS-100 instrument. Chemical shifts are given in parts per million relative to tetramethylsilane as an internal standard.

References

- 1) T. Kato, M. Sato, and Y. Kitagawa, Chem. Pharm. Bull., 26(3), (1978) in press.
- 2) T. Kato, M. Sato, and Y. Kitagawa, J. Chem. Soc. Perkin I, in press.
- 3) R. O. Duthaler, K. Wicker, P. Ackermann, and C. Ganter, Helv. Chim. Acta, <u>55</u>, 1809 (1972).
- 4) A. C. Cope, M. A. McKervery, and N. M. Weinshenker, J. Org. Chem., <u>34</u>, 2229 (1969).
- 5) Satisfactory elemental analyses were obtained.

(Received November 29, 1977)